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Secure Routing based on Social Similarity in
Opportunistic Networks

Lin Yao, Yanmao Man, Zhong Huang, Jing Deng, Xin Wang

Abstract—The lack of pre-existing infrastructure or dynamic
topology makes it impossible to establish end-to-end connec-
tions in Opportunistic Networks (OppNets). Instead, a store-
and-forward strategy can be employed. However, such loosely-
knit routing paths depend heavily on the cooperation among
participating nodes. Selfish or malicious behaviors of nodes
impact greatly on the network performance. In this paper,
we design and validate a dynamic trust management model
for secure routing optimization. We propose the concept of
incorporating social trust into the routing decision process and
design a Trust Routing based on Social Similarity (TRSS) scheme.
TRSS is based on the observation that nodes move around and
contact each other according to their common interests or social
similarities. A node sharing more social features in social history
record with the destination is more likely to travel close to the
latter in the near future and should be chosen as the next-hop
forwarder. Furthermore, social trust can be established based
on an observed node’s trustworthiness and its encounter history.
Based on direct and recommended trust, those untrustworthy
nodes will be detected and purged from the trusted list. Since
only trusted nodes’ packets will be forwarded, the selfish nodes
have the incentives to well-behave again. Simulation evaluation
demonstrates that TRSS is very effective in detecting selfish or
even malicious nodes and achieving better performance.

Index Terms—opportunistic network; social similarity; incen-
tive; trust routing

I. INTRODUCTION

OPPORTUNISTIC Networks (OppNets) are a sub-class of
Delay-Tolerant Networks (DTNs) where communication

opportunities are intermittent and an end-to-end path between
source and destination may never exist [1]. OppNets allow the
devices in different regions to interconnect by sending mes-
sages in a store-and-forward fashion. This makes traditional
routing techniques based on the existence of an end-to-end
connection unsuitable for OppNets.

Different approaches have been proposed in recent years
to address the routing issues in OppNets. Flooding is prob-
ably the most straightforward one. In flooding, a message is
broadcasted from every node to all its encounters until the
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message reaches a predefined maximum hop count (i.e., Time-
To-Live or TTL value) or the destination. In order to reduce
the overhead of storage usage and communication bandwidth,
routing can be performed more selectively based on the context
information. The widespread use of smartphones and tablet
PCs enriches the collection of social context information. Peo-
ple often move around and come into contact with each other
based on their social attributes such as workplace, interest,
and friendship. These social contexts play an important role
in improving the routing performance [2].

Despite various efforts in developing routing schemes for
OppNets, they do not consider relay nodes’ trustworthiness.
Although nodes with closer social relationship are more likely
to meet thus increasing the chance of message delivery, it
does not prevent the selfish nodes from dropping packets to
conserve their own resources such as buffer space and energy
nor does it prevent the malicious nodes from attacking the
networks. The assumption on full cooperation from nodes with
social relationship helps improve the routing performance on
the one hand, but also makes the transmission more vulnerable
to the attacks if no protection is provided in the routing
scheme. It is thus critical to detect and isolate the selfish and
malicious nodes from the well-behaving ones [3], [4].

Because of the unique properties of OppNets, the incentive-
based techniques trying to motivate cooperative packet for-
warding in mobile ad hoc networks are not suitable for Opp-
Nets. The power and networking constraints in opportunistic
networks that are not often found in other networks requires
efficient usage of each node’s battery and storage. Incentive
mechanisms in mobile ad hoc networks relying on connected
end-to-end paths for control plane messages will then not
work well in OppNets with potentially selfish or malicious
nodes [5].

In this work, we propose a dynamic trust management
scheme to deal with both malicious and selfish misbehaving
nodes. We develop a Trust Routing method based on Social
Similarity (TRSS) for OppNets. Our trust model can evaluate
each node’s trustworthiness based on the direct and indirect
relationship between nodes. The nodes with lower trust values
can be detected and prevented from working with other normal
nodes for packet delivery. This trust management scheme not
only helps protect the network from transmission disruptions
but also serves as an incentive for nodes to well-behave and
collaborate in packet transmissions in OppNets.

Our main contributions of the paper are as follows:
(i) We propose to combine similarity from social features

and node behaviors into a composite metric in order
to assess the trust of a node in OppNets. We also
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design a new encounter-based acknowledgment scheme
to evaluate node behaviors.

(ii) We incorporate trust into the routing decisions in Opp-
Nets to protect against selfishness and various trust-
related attacks, including Promise-Then-Drop, Trust-
Boosting, and Defamation, some of which are collab-
orative attacks.

(iii) We propose a scheme to effectively evaluate node
behaviors based on direct and indirect observations,
which are facilitated with a novel scheme for behavior
feedbacks in the presence of opportunistic links in
OppNets. The behavior evaluation also serves as an
incentive mechanism to effectively reward the good
behaviors of normal nodes while purging selfish and
malicious nodes from normal network operation.

(iv) We evaluate the performance of our trust-based OppNet
routing protocol along with the proposed dynamic trust
management scheme through extensive simulations.
Compared to non-trust based protocol (PROPHET [6])
and social-aware routing algorithm (dLife [7]), TRSS
improves the delivery ratio about 25% while reducing
the number of duplicated packets by about 85% and
improves delivery latency for about 10%.

The rest of this paper is organized as follows. In Section II,
we discuss the related work. The system model is given in
Section III. We present the details of our TRSS scheme in
Section IV. Simulation results and discussions are presented
in Section V. Finally, we conclude our work in Section VI.

II. RELATED WORK

Based on different data forwarding behavior, we classify the
existing routing algorithms for OppNets into two categories:
Flooding-based, and Context-based.

Flooding-based Routing In flooding-based routing
schemes, messages are flooded during each user encounter.
The classic Epidemic routing algorithm [8] guarantees that
all nodes will eventually receive all messages at the cost of
large transmission overhead and required buffer size. In order
to reduce such overheads, researchers designed schemes to
control the message replication process based on different
factors, such as time-to-live (TTL), kill-time, and passive
cure [9]. For instance, Spyropoulos et al. proposed Spray and
Wait [10] with two phases: In the “spray” phase, the source
node sprays L copies of the messages over the network; In
the “wait” phase, nodes with copies of messages perform
direct transmission until the messages find the destination.
Similarly, Spray and Focus [11] sprays forwarding tokens and
only nodes with forwarding tokens are allowed to forward
messages to different relays.

Flooding-based schemes generally can achieve higher mes-
sage delivery rate by flooding packets throughout the network.
However, the sometimes prohibitive communication cost and
required buffer size render them inappropriate in most Opp-
Nets.

Context-based Routing In context-based routing schemes,
next-hop relays are chosen based on user context information,
such as mobility patterns, encounter history, and social rela-
tionship. Usually, the set of message carriers are selected based

on the estimation/prediction of the message delivery probabili-
ty, depending on encounter frequency, aging encounters, aging
messages, and resource allocation [12]. Context-based routing
schemes can be further divided into non-incentive context
routing and incentive context routing.

a) Non-incentive context-based routing: Non-incentive
context-based routing schemes are usually based on the as-
sumption that nodes (users) are trustworthy. For instance, in
CAR [13], routing choices are based on candidates’ future
encounter probability with the destination. Such probabilities
are estimated from past encounter frequency [14]–[16], aging
encounters (a more recent encounter is preferred) [17], and
resource consumption [18], [19].

There are non-incentive context-based routing schemes that
consider different social properties, such as Community, Cen-
trality, Friendship, or Similarity. For example, in Bubble
Rap [20], nodes belonging to the same social community as
the destination are preferred. If no such nodes are found,
preference is given those nodes with higher probabilities of
reaching the destination community. Friendship-based rout-
ing [21] prefers friends, which are defined as those users
with frequent, regular, and long-lasting contacts with the
destination. In [22], a reputation approach is used to forward
messages to nexthop nodes belonging to the same group or
with the same label as the destination. In [23], centrality and
similarity are used to predict the probability that potential
relay nodes may meet the destination. In [24]–[27], it is
observed that people having similar interests tend to meet
more often and social-aware routings have been proposed.
Similar approaches include HiBOp [28] using history of social
relationships among nodes and social feature extraction using
entropy [29].

Compared with flooding-based routing, these schemes use
context information to reduce the routing overhead. However,
they do not consider the selfish or malicious behaviors from
users.

b) Incentive context-based routing: Incentive context-
based routing schemes try to improve route robustness in the
presence of selfish or malicious nodes. Different assumptions
are made, e.g., credit-based mechanisms [30], [31] assuming
centralized credit banks and barter-based mechanisms [32],
[33] assuming nodes exchanging equal amounts of services.

Some incentive schemes are based on reputation, which
is calculated based on the collaboration level of a node
with other entities. For example, in SORI scheme [4], the
reputation of a node is quantified by objective measures,
and the propagation of reputation is efficiently authenticated
by one-way hash chains. In [34], a recommendation model
is proposed to distinguish truth-telling and lying agents so
as to detect the selfish nodes, obtain true reputation of an
agent, and ensure reliability against attacks of defame and
collusion. Some cooperative mechanisms operate on nodes’
transit behavior [3], [35]. Nodes are given different prior-
ity in transmissions based on their forwarding behaviors.
Some incentive schemes consider social-network information
to improve performance. IRONMAN [36] uses a record of
the social-network data from self-reported social networks
to bootstrap an incentive mechanism. Self-reported social
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networks can be obtained through interview, or from online
social networks (e.g., Facebook friends lists). SSAR [37] uses
social ties to cope with selfishness; i.e., nodes are willing
to forward packets for those with whom they have social
ties such as family members and friends even at the cost of
their own resources. In [36], [37], only social relationship is
considered during the relay selection, while the selfishness
of the nodes is ignored.In contrast, our paper considers the
individual selfishness, i.e., a selfish node may refuse to forward
packets for anyone else when it has limited resources to use.
A node chooses its next-hop relays considering both the social
similarity between a candidate relay and the destination as well
as the relay behaviors.

Credit-based mechanisms are hard to achieve in
intermittently-connected OppNets because they require
a secure trust mechanism. Barter-based mechanisms’
performance can degrade sharply with networks with
heterogeneous traffic from different users. Simulation results
show that the reputation-based strategies can work well even
if many nodes drop packets [38], [39]. However, existing
incentive schemes either only check whether an intermediate
node forwards messages to other nodes or fail to use trust to
protect against collaborative attacks.

Summary of Related Work In order to have efficient
routing in social OppNets, social charactersitics as well as user
behaviors have to be addressed simutaneously. On one hand,
there have been some prior arts exploiting social characteristics
such as Community, Centrality, Similarity, or Friendship to
facilitate packet forwarding [20], [21], [23]–[25], [27]–[29].
They fail to address the issues caused by selfish or mali-
cious nodes’ behaviors. On the other hand, other priopr arts
addressed potential attacks from selfish or malicious nodes
based on prior social ties from interviews or especially online
social networks [36], [37], [40]. Instead, our approach is to use
both social similarity as well as nodes’ past forwarding history
for routing selection. Selected forwarding nodes should have
high social similarity with the packet destination (for a better
chance of reaching it soon) as well as high trust value, which
is constantly re-evaluated based on their forwarding history.

III. SYSTEM AND ATTACK MODELS

We consider an OppNet environment without assuming
the existence of a trusted authority. Nodes have the follow-
ing transmission characteristics [41]: Every node uses omni-
directional transceivers to monitor its neighbors in promiscu-
ous mode. All links are bi-directional and all nodes have a sim-
ilar transmission range. A packet will be received/overheard by
the nodes within the transmission range. We further assume
that users are willing to share their social features in order
to participate in cooperative forwarding in OppNets. Note
that this may lead to privacy concerns as some users do not
want to share some of their social features. In fact, techniques
can be developed to take advantage of social features while
maintaining a certain level of privacy [41], [42]. We leave the
extension of our scheme to protect user privacy toward our
future work.

Nodes communicate with each other through the help of
other nodes when necessary. Every node forwards messages

based on its trust relationship with others. A node’s trust is
assessed based on direct trust evaluation and indirect trust
information like recommendation. The direct trust evaluation
is generated from physical neighbors and the indirect trust
evaluation is derived from the recommendation of other inter-
mediate nodes. The trust of one node toward another is updated
upon encounter events by combining social features with the
forwarding behaviors, which will be discussed in Section IV.
Packets are only forwarded to those trusted nodes.

We classify three types of nodes in the network: normal
nodes, selfish nodes, and malicious nodes. A normal node
possesses higher trust values, while a selfish and malicious
node has lower trust value. Normal or well-behaving nodes
follow the rules to help other nodes store and forward packets.
Selfish nodes are differentiated from malicious nodes. Selfish
nodes may drop packets out of the rational consideration,
for example, in order to save their own resources. Malicious
nodes, however, may intentionally break the basic network
functions such as launching various attacks. In this paper, we
focus on the following attacks:

(i) Promise-Then-Drop: The attacker first promises to for-
ward packets for other nodes, receiving a higher trust
from its neighbors. Then it silently drops the packets that
it receives and ought to forward.

(ii) Trust-Boosting: Malicious attackers exaggerate the rep-
utation of other malicious users by submitting biased
recommendations for them. With the higher trust value,
they attract more packets to drop.

(iii) Defamation: The attacker or a group of attackers try
to lower the trust level of a well-behaving node by
submitting bad recommendations against the target.

Note that most of the above attacks can be launched
collaboratively, except maybe attack (i). For instance, a group
of malicious nodes can boost their trust values artificially by
providing abnormally high recommendations to each other.
Similarly, they can defame a target node by submitting low
recommendations.

In order to ensure efficient network operation, it is essential
to have cooperation among nodes. Therefore, our major goal
in this work is to design a trust routing scheme to resist
the misbehaviors and to stimulate the nodes to relay packets
for others. Each node executes the trust model indepen-
dently. By ranking nodes based on their trust values, our
TRSS scheme can effectively select the trustworthy relays for
message forwarding. Furthermore, in order to provide nodes
with incentives to cooperate in packet forwarding and punish
misbehaving nodes, packets from nodes with very low trust
values will be discarded.

IV. THE TRUST ROUTING SCHEME BASED ON SOCIAL
SIMILARITY (TRSS)

In this section, we will elaborate our TRSS scheme. We
will present a trust model to quantify the trust relationship
among network entities and facilitate their safe and effective
interactions. The frequently used notations in the paper are
listed in Table I. In the remaining subsections, we present
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TABLE I: Frequently Used Notations

Notation Description
ni Node i
S,D Source, Destination
ηi,j Social similarity computed by node i

toward node j
Fni The vector of social features for ni

fj j-th feature
Lj Number of values of j-th feature
Njk Number of the value of Lj that is k

in HISTORY-TABLE
M The matching vector of social features
Ti,j The evaluated trust value from ni to nj

FEATURE A table recording a node’s social
-TABLE features

HISTORY A table recording the social
-TABLE encountering history

TRUST-TABLE A table recording the trust values
EACK A table recording the information needed

for Encounter-based Acknowledgment
PROMISE The trust threshold above which a promise may

-THRESHOLD be made to help forward a data packet
SELECTION The trust threshold above which a selection may

-THRESHOLD be made to forward a data packet

our algorithms on the calculation of social similarity, estab-
lishing trust model, making routing decision, Encounter-based
Acknowledgment, and protection against various attacks.

A. Computing Social Similarity

The TRSS scheme is motivated from several social contact
networks, such as the Infocom 2006 traces, where people
come in contact with each other more frequently if they have
more social features in common [29]. We further illustrate
this feature in Figure 1 that is derived from the data of
cambridge/haggle trace. The X-axis shows the number of
features that people share in common, while the Y-axis shows
the encounter frequency, defined as the ratio of the total
number of encounters and the number of node pairs. Taking
point (4, 20) as an example, suppose there are 120 pairs of
people who have X = 4 social features in common and their
total encounter times is 2400, we have Y = 2400

120 = 20.
Notice that, in Figure 1, when the number of common features
increases, the encounter frequency increases as well, which
shows that people will meet more frequently if they have
more social features in common. Therefore, if social features
can be exploited to select forwarding nodes, data packets will
have a higher chance of reaching the destination. We further
exploit this, and introduce our scheme for determining social
similarity based on encounter history, there are some basic
terminologies.

• Social Feature Vector:
F = 〈f1, f2, . . . , fi, . . . , fr〉

F is a vector of social features with r elements from f1
to fr, where fi denotes the i-th social feature as shown in
FEATURE-TABLE (Table II). Each feature has multiple
possible values. For example, f4 can refer to Languages
with the values of “Chinese” or “English”.
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Fig. 1: Encounter Frequency changes along with Social Sim-
ilarity

TABLE II: An example for Feature-Table

Description Value
f1 Country (Living) China
f2 City (Working) Beijing
f3 Nationality Chinese
f4 Languages Chinese, English
· · · · · · · · ·
fi Affiliation IBM
· · · · · · · · ·
fr Position Manager

• Social History Record: Our scheme requires that neigh-
boring nodes exchange their social features to form the
social history record. This table is used to record encoun-
tered nodes’ social features. Take Table II for an example,
we have the following social features, 〈 Country, City,
Nationality, Languages, Affiliation, Position〉. The social
features of a node ni, F i = 〈f1, f2, f3, f4, f5, f6〉, may
be 〈“China”, “Beijing”, “Chinese”, “Chinese, English”,
“IBM”, “Manager”〉. After exchanging social features
with its neighbors, ni’s HISTORY-TABLE in Table III is
updated based on the received social features from all
neighboring nodes. For example, if ni has updated its
record f2 with “Beijing = 2”, it means that it has met
two users from Beijing.

• Social Similarity: This parameter is applied to represent
the degree of similarity between a node ni and the
destination D. A higher similarity implies that ni has
a better chance of meeting D.

In the TRSS scheme, we use the following method to
compute social similarity: a source node broadcasts D’s social
profile, FD = 〈fd1 , fd2 , · · · , fdr 〉. Each neighbor computes
the social similarity according to the received profile and
its own HISTORY-TABLE. Assuming that feature fj has Lj
different values and each value corresponds to Njk encounters,
where k = 1, 2, · · · , Lj . We apply a parameter wj to denote
the ratio between the number of nodes with a certain value of
feature fj and all the encountered nodes. ni can compute wi
as:

wj =
Njk∑Lj

k=1Njk
(1)

For example, social feature fj is “Affiliation”. If
∑Lj

k=1Njk
is equal to 10, this neighbor has encountered 10 users who
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TABLE III: An example for History-Table

Feature Value1 Value2 · · ·
Country China (2) United States (3) · · ·
City Beijing (2) New York City (3) · · ·
Nationality Chinese (2) United Kingdom (3) · · ·
Language Chinese (2) English (5) · · ·
Affiliation IBM (1) PKU (1) · · ·
Position Manager (3) Teacher (2) · · ·
· · · · · · · · · · · ·

work at different affiliations. If Njk is equal to 4 and k
corresponds to the value “IBM”, it means this neighbor has
met 4 users from IBM.

Combining all different features from D’s profile, the social
similarity between ni and D is

ηi,D = 1−

√∑r
j=1 αj(1− wj)2

r
, (2)

where αj is the weight for the feature j and
∑r
j=1 αj = r.

In the example of Table III, assume that D has a social
feature of F = 〈“China”,“Beijing”, “Chinese”,“Chinese, En-
glish”,“IBM”, “Manager”〉. For the feature “Country”, there
are two encounters from “China” and three from “United
States” in ni’s HISTORY-TABLE. Thus, w1 = 2

2+3 = 2
5 . Simi-

larly, for feature “Language”, we can get w4 = 2+5
2+5 = 7

7 = 1.
Then, we get

M = 〈w1, w2, w3, w4, w5, w6〉 = 〈
2

5
,
2

5
,
2

5
, 1,

1

2
,
3

5
〉 (3)

Assuming αj = 1 for all j = 1, 2, · · · , r, the social similarity
between ni and D is 0.502 based on Eq.( 2).

B. Trust Model

The concept of trust is originated from social sciences and
defined as the degree of subjective belief about the behaviors
of a particular entity [43]. It is a relationship between the eval-
uating and evaluated node. The likelihood that the evaluating
node expects the evaluated one to offer certain services is a
trust value within [0, 1], while 0 indicates no trust and 1 means
full trust.

In this section, we aim to exploit a trust model in the
forwarding-node selection process. Based on the observations
of routing behaviors, our trust model to reward or punish the
nodes’ behavior by increasing or decreasing the trust value.
Only nodes with high trust values are chosen as next hops,
while those nodes with low trust values, as a punishment,
will not be served. Our trust management framework consists
of three building blocks, as illustrated in Figure 2. The trust
management block serves as the interface between the trust
record and applications that request the trust value or the
routing behavior feedbacks. The trust record is formulated
through the trust maintenance process, which obtains direct
trust values from interactions between neighbors and indirect
trust values from recommendations. Based on the trust record,
misbehaving nodes will be detected and excluded from normal
network operations and well-behaving nodes will be rewarded
by collaborating with others in packet transmissions.

Fig. 2: Trust Model

1) Direct Trust Evaluation: A node can directly form its
trust level on another node based on its interaction with it.
When two users (nodes) encounter first, each can determine the
other’s trust according to the social behaviors/characteristics
. For example, if both come from the same university, they
would trust each other more than the one from a third party
which does not have any common social feature. Assume that
two nodes na and nb come into contact with each other. Based
on the HISTORY-TABLE, we initialize the trust value Tb,a
from nb to na as the social similarity ηb,a calculated based
on Formula (2).

Then, Tb,a is updated dynamically based on the packet
relaying behaviors of node na as below:

T
(new)
b,a = f(f−1(Tb,a)± Ta,b). (4)

If na helps nb to forward packets, the trust value from
nb to na, which is Tb,a, will increase; otherwise, Tb,a will
decrease. Thus, we should adopt an incentive factor which
plays the function of rewarding or punishing na. To reduce
the simulation complexity, we simply adopt an incentive
factor Ta,b. The initial value of Ta,b is computed in Eq. (1).
Furthermore, to guarantee T (new)

a,b within [0, 1], a continuous
function f() is applied to normalize T (new)

b,a to be within [0, 1].
In our simulation, we choose the following function

f(x) =

{
1
2e
βx x < 0

1− 1
2e

−βx x ≥ 0,
(5)

where β is a constant factor that impacts the Tb,a adjustment
rate. Tb,a approaches 0 or 1 if one node keeps the same routing
behavior such as selfish or cooperative.

Based on f(x), Eq. (4) then becomes

T
(new)
b,a =

{
Tb,a · eβTa,b x̃ < 0

1− (1− Tb,a)e±βTa,b x̃ ≥ 0,
(6)

where x̃ = f−1(Tb,a)± Ta,b.
f() has a steep slope in Equation (5) when x is around 0,

which indicates that the trust value is easily changed by some
bad or good behaviors at that time. It will benefit the new n-
odes so that they can be included into data forwarding quickly.
So f() helps to evaluate a node’s trust more effectively.
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na nb

nc
Ta,c = 0.7 Tb,c = 0.6

Ta,b = 0.9

Tnew
a,c = (Tb,c − Ta,c)× Ta,b + Ta,c = 0.61

(a) Trust re-evaluation on an existing node

na nb

nc Tb,c = 0.6

Ta,b = 0.9

Ta,c = (Tb,c − α)× Ta,b + α = 0.59

(b) Trust valuation on an unknown node when α = 0.5

Fig. 3: Illustration of (re)evaluating trust of different nodes

2) Indirect Trust Evaluation: A node may not have enough
chance to directly observe the behaviors of an encountered
node. In order to build more reliable trust values, our trust
model incorporates into its trust calculation the indirect or rec-
ommended trust values obtained from an intermediate entity.
Specifically, after two encountering nodes na and nb exchange
their TRUST-TABLEs, they will update the trust value of a
third node nc. Node na recalculates its trust on nc based on
the following equation

T (new)
a,c = (Tb,c − Ta,c) · Ta,b + Ta,c, (7)

where Ta,c is the current trust value that node na has on the
node nc. If node nc is a newly encountered node, Ta,c is set
to an initial value of α = 0.5. Tb,c is the recommendations
from nb. The impact on Ta,c by the indirect trust value Tb,c
depends on the trust of na towards nb, and increases with Ta,b.
Figure 3 illustrates two cases that na computes Ta,c based on
the recommendation trust Tb,c. In Figure 6(a), na has already
recorded Ta,c in its TRUST-TABLE. In Figure 6(b), na has no
record on Ta,c. In Figure 6(a), na updates Ta,c based on the
recommendation Tb,c, Ta,b and the old Ta,c. While in Figure
6(b), nc is a newly encountered node, so Ta,c is set to an
initial value of α = 0.5.
Ta,b in Eq. (7) helps to defeat collaborative attacks. Suppose

two attackers nb and nc try to increase their trust values Ta,b
and Ta,c. nb and nc recommend fake and high trust value Tb,c
and Tc,b to na. However, na cannot believe them or generate
high trust value in Eq. (7), because the original trust value
Ta,b or Ta,c is not high.

C. Routing Decision

In order to achieve efficient data forwarding in OppNets, it
is critical for a node to select the next-hop relays which can
continue forwarding data towards the destination. A straight-
forward method is to simply choose the node with the highest
trust value. However, the nodes with high trust values may
not be the ones with high social similarity, and the conflicting
results may compromise the routing performance.

Our selection algorithm concurrently considers trust value
and social profile. Suppose na and nb meet, na can determine
whether it should choose nb as the next-hop node to forward
its data packet for a destination D based on the following
steps:

(1) The two nodes exchange their FEATURE-TABLE and
update their own HISTORY-TABLE.

(2) The two nodes exchange their EACK, based on which
they execute the Encounter-based Acknowledgment we
will discuss in Section IV-D.

(3) The two nodes exchange their TRUST-TABLE and then
update their individual tables based on the indirect trust
evaluation.

(4) Based on the trust value Tb,a, nb decides whether to
help na to forward the packet toward D. If Tb,a is
higher than the PROMISE-THRESHOLD, e.g., 0.5, nb
will compute the similarity value ηb,D and reply ηb,D
and Tb,a to na as a “promise”.

(5) Based on both ηb,D and Ta,b, na decides whether to
choose nb as the forwarder. If ηb,D > ηa,D and Ta,b is
higher than the SELECTION-THRESHOLD, e.g., 0.5,
it will forward the packet to nb.

D. Encounter-based Acknowledgment

Algorithm 1 Encounter-based Acknowledgment

Data Structure:
Multi-Map EACK〈key, value〉 where
key is the node waiting for the acknowledgment
value is the node to be confirmed of behavior and certain
msgid

Function: recvMessage(msg)
1: for each ni in routingPath of msg do
2: wait meet← ni
3: wait confirmed← {ni+1,msgid}
4: store 〈wait meet, wait confirmed〉 into EACK
5: end for

Function: encounter(nB):
6: for each mapping〈key, value〉 in EACK do
7: if key = nB then
8: nB .updateTrustTable(value);
9: end if

10: end for

In order to evaluate the behavior of a node and form the
trust value, an evaluating node needs to know if packets have
actually been forwarded by the evaluated node. Unlike con-
ventional mobile ad hoc networks where a node can overhear
the transmission from its next-hop node, the learning of the
packet transmission status in OppNets is nontrivial. A next-hop
node may not be able to send out the packets immediately but
has to wait until it meets a better forwarder or the destination
itself. Its transmission is generally not overheard by the sender
directly. In addition, a receiver may never come close to the
sender in the near future or ever.

There are some works trying to address this issue, by mostly
focusing on how to estimate current network topology more
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accurately [18], [44]. These include relying on friends with
similar interests [45], incentive-based ACK [36], [46], virtual
checks [46], full encounter history [36]. Instead, what we need
here is a light-weight acknowledgment mechanism to provide
feedback for delivery promises.

In our TRSS scheme, we develop an acknowledgment tech-
nique called Encounter-based Acknowledgment, which does
not require active packet transmission until two nodes meet.
Each packet carries the IDs of previous L − 1 hops of the
path that it has gone through. A general scenario is shown in
Figure 4. The packet forwarding of ni is known by L nodes,
ni, ni+1, · · ·ni+L−1. The last L − 2 nodes on the list can
provide Encounter-based Acknowledgment to ni to confirm
the forwarding behavior of ni+1. Obviously, the chance for the
sender to receive the acknowledgment increases with the value
of L. By adjusting L, the network load of acknowledgment can
be changed. In addition, identity-based security can be added
to ensure that EACK counterfeits do not have a opportunity.
Or, a simple hash can be computed of the payload and inserted
into the packet record as well as EACK, resulting in a small
amount of extra overhead.

Algorithm 1 illustrates our scheme in details.
Figure 5 shows a special scenario with L = 3, where nc may

eventually meet na, which will receive the acknowledgment
from nc about the message delivery status. In order to make
the acknowledgment work, nc needs to record the ID of the
message sender as well as ones carried by the message (line
1 ∼ 5 of Algorithm 1). When nodes na and nc encounter, nc
provides na with the information that whether it has indeed
received a message from nb (line 6 ∼ 10 of Algorithm 1). If
so, the trust for nb is increased by na; Otherwise, the trust
value will be decreased. The trust value can be updated based
on Equation (4).

E. Protection Against Various Attacks

In this section, we discuss the design of our scheme in
defending against some potential attacks.

i) Protection against Promise-Then-Drop Attack: With
the help from the EACK technique, those nodes launching
Promise-Then-Drop attacks will be caught and their new trust
recommendations will be lowered by the detecting nodes.
Note that our EACK technique cannot detect nodes with bad
connections or simply fail. We argue that, as such nodes
drop the promised-to-forward packets, their trust should be
gradually lowered. Indeed, nodes with such problems should
not promise to help other nodes.

ii) Protection Against Trust-Boosting Attacks: In our trust
evaluation procedure, a node’s trust value is assessed based
on direct trust evaluation and indirect trust information like
recommendations. When two nodes na and nb encounter for
the first time, the trust value from nb to na is computed
on Eq. (1). nb must continuously evaluate na based on na’s
forwarding behaviors. Furthermore, nb can directly assess its
trust toward na and update Tb,a after an encounter confirms
the behavior of na.

iii) Protection Against Defamation Attacks: While one or
several malicious nodes can artificially lower their recommen-
dation of a target node’s behavior, the target’s normal behavior
of forwarding data packets for other users can still earn its way
back to a high trust value. In fact, the intrinsic mobility pattern
in OppNets makes it possible for a victim node to “escape”
from the collaborative defamation attacks from a group of
malicious nodes surrounding itself and regain the trust from
well-behaving users.

V. PERFORMANCE EVALUATIONS

To evaluate the performance of our trust routing model, we
use the Opportunistic Network Environment (ONE) simula-
tor [47] specially designed for opportunistic network. We use
Infocom 2006 trace [48] in our simulation, including 121,029
encounters among 85 users in a period of 342915 seconds,
or roughly 4 days. Instead of using all social features in
the dataset, we adopt 6 informative features based on their
entropies [29], which are Affiliation, City (of residence), Na-
tionality, Language, Country (of residence), and Job Position
(Student/Researcher/Professor). Each user is equipped with
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TABLE IV: Simulation Setup

Number of runs 20
Simulation time 342915 seconds
Warmup time 100000 seconds
Transmission Speed 54Mbps
Transmission Range 100 Meters
Buffer size 100MB
TTL time 1433 minutes
Number of nodes total 85
Ratio of selfish/malicious 0-80%

a wireless device with a transmission rate of 54 Mbps and
a transmission range of 100 meters. One distinct packet is
generated randomly with the average duration 400 to 600
seconds. The source and destination are randomly chosen from
the 85 nodes. The packet size ranges from 0.5 to 1 MBytes.
All simulation results are the average of 20 random runs.

We compare our proposed scheme with IRONMAN [36],
dLife [7] and Epidemic [8]. IRONMAN uses a record of
the social-network data from self reported social networks to
bootstrap an incentive mechanism, while dLife is a social-
aware routing algorithm based on daily routines and considers
time-evolving social ties between members. Epidemic is a
flooding-based routing scheme. We compare these schemes
using the following eight different metrics :

• Delivery Ratio: The ratio of data packets delivered to
destination nodes before they are removed from the
network due to an expired TTL. This is obvious necessary
to gauge how efficient a routing scheme is.

• Delivery Latency: The time duration from a message is
generated until it is received.

• Dropped Packets: The number of packets that are dropped
maliciously by misbehaving nodes.

• Delivery Cost: The average number of duplicated packets
divided by the numbers of packets that successfully reach
the destination.

• Detection Time: The time consumption to detect a mis-
behaving/malicious node correctly.

• Detection Accuracy: The proportion of misbehaving n-
odes that are detected correctly.

• Average Trust Value (ATV): The average trust value from
all nodes towards one node or a group of nodes under
the evaluation.

ATV =

∑n
i=1

∑m
j=1 Ti,j

nm
,

where n is the number of all nodes, and m is the number
of evaluated nodes like malicious nodes or selfish nodes.

• ACK Delivery Ratio (ADR): The average number of ACK
delivered in the network for each packet that is forwarded
successfully to next-hop and covers at least 3 hops.

ADR =
t

p
,

where t is the number of ACK delivered and p is the

number of packets that are forwarded successfully to the
next-hop and cover at least 3 hops.

A. Impact of Different Percentage of Misbehaving Nodes

In this section, we compare TRSS scheme with other related
schemes under different numbers of misbehaving nodes. As
discussed in Eq. (6), the initial trust value is very close to 0.5
when α is 0.5. Also, f(x) gets the maximum slope value with
y = 0.5. Thus, every node can change its trust value obviously
by a few behaviors such as simply helping or refusing to
forward packets. Consequently, 0.5 can be seen as a boundary
to discriminate the good and bad nodes. The trust value of
good nodes is higher than 0.5, or vice versa. So the PROMISE-
THRESHOLD and SELECTION-THRESHOLD would better as
0.5. Because of the simulation time, the distribution of trust
value would be appropriate with β = 0.06 based on Equation 4
and 5.

(1) Delivery Ratio. Figure 6a shows that the delivery ratio
of TRSS, Epidemic, dLife and IRONMAN decreases with
the number of misbehaving nodes, because more packets are
dropped. Misbehaving nodes cannot be detected in Epidemic
and dLife, so their delivery ratio reduces more quickly than
TRSS and IRONMAN. Compared with IRONMAN, TRSS
has a stable delivery ratio with TRSS decreasing by 0.07
and IRONMAN decreasing by 0.18. In TRSS, the indirect
evaluation and Encountered-based Acknowledgment can de-
tect more misbehaving nodes and choose relays with similar
social background and higher encounter probability to the
destination. In IRONMAN, only forwarding record is used
to detect these nodes without considering trust evaluation and
social features. As a result, TRSS works better in defending
misbehaving nodes. Moreover, the delivery ratio of TRSS
is 29% higher and 118% higher than that of Epidemic and
dLife, respectively, at 80% percentage of misbehaving nodes.
In ONE simulator, every node unicasts a packet to one of the
neighbors in each time period (depending on the transmission
rate). To improve the performance, in TRSS, a packet is
forwarded to the neighbor with a higher trust value and social
similarity. While in Epidemic, a packet may be forwarded to
a misbehaving node, and the delivery ratio will decrease if the
misbehaving node discards the packet. In other words, this
time period is wasted.

(2) Delivery Latency. The average delivery latency is mainly
caused by packet queuing and retransmissions. In Figure 6b,
as expected, the average delay of four schemes increases with
the number of misbehaving nodes. Epidemic is a flooding-
based scheme and cannot detect these misbehaving so as not
to avoid packets are forwarded to misbehaving nodes, which
causes the delivery latency of Epidemic to increase fastest.
Although dLife cannot detect misbehaving nodes, its next-
hop is selected based on certain daily routines, which helps
to avoid going through part of the misbehaving nodes. Thus,
it has a stable delay comparatively. As more misbehaving
nodes appear, TRSS and IRONMAN can detect them and
they have a lower delay compared with Epidemic and dLife.
As discussed before, TRSS has a strict policy to detect more
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Fig. 6: (a) Delivery ratio comparison of TRSS, Epidemic, IRONMAN and dLife with different numbers of misbehaving
nodes. 95% confidence intervals are also presented, showing the variations of all different runs of simulations. (b) Delivery
latency comparison of TRSS, Epidemic, IRONMAN and dLife with different numbers of misbehaving nodes. (c) Delivery cost
comparison of TRSS, Epidemic, IRONMAN and dLife with different numbers of misbehaving nodes.
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Fig. 7: (a) Dropped packets comparison for TRSS, Epidemic, IRONMAN and dLife with different numbers of misbehaving
nodes. (b) Detection Efficiency comparison of TRSS and IRONMAN.

selfish/malicious nodes than IRONMAN. Thus, TRSS works
best.

(3) Delivery Cost. In ONE, a packet copy will be kept in
the buffer when every node receives a new packet. Though
these misbehaving nodes receive packets, they will drop them
without forwarding the packets. Once there are no more of
these copies detected in the buffer by the upstream nodes,
duplications will be generated. Epidemic has the most delivery
cost in Figure 6c, because Epidemic cannot detect misbehaving
nodes so that most packets are dropped as misbehaving nodes
increase, leading to more duplications. Figure 6c shows the
delivery cost of dLife increases as more malicious nodes drop
packets when the percentage of misbehaving nodes is less than
40%. Although dLife cannot detect misbehaving nodes, dLife
chooses the next hops strictly based on the social tie. When
the percentage is between 40% and 80%, less and less relays
are chosen so as to dropped packets rate decreases gradually,
leading to a decreasing delivery cost. Consequently, dLife
has a better performance than Epidemic. The delivery cost of
TRSS and IRONMAN declines because both are able to detect
and filter the misbehaving nodes. IRONMAN has a lower
delivery cost because IRONMAN runs with the spray and wait
routing scheme that‘ ‘sprays” a limited number of replicas and
“waits” for the destinations, while TRSS keeps duplicating
and forwarding packets until better relays are encountered.
However, the delivery cost of TRSS reduces by 33.5, while
IRONMAN reduces only by 1.97, which demonstrates the
detection efficiency of misbehaving nodes in TRSS is higher
than that in IRONMAN because TRSS adopts the indirect

evaluation and the Encounter-based Acknowledgment.

(4) Dropped Packets. Figure 7a shows the Selfishness Cost
of four schemes. TRSS has the lowest Selfishness Cost, and
IRONMAN is lower than dLife and Epidemic, because TRSS
can detect malicious nodes more efficiently than IRONMAN
as discussed before. Compared with Epidemic, dLife chooses
the next hops strictly based on the social tie. Thus, dLife has
a better performance than Epidemic. Based on the results in
Figure 7a, the extremely low numbers of TRSS call for some
explanations: in TRSS, misbehaving nodes will be detected
after they drop about two packets (from other nodes) and they
will not be chosen to forward packets again. In reality, these
nodes should be re-introduced into routing again through some
kind of time-out and/or re-evaluation, but we leave that to our
future work.

(5) Detection Efficiency. Since dLife and Epidemic are not
able to support selfish detection, we only compare TRSS with
IRONMAN in this scenario. As shown in Figure 7b, TRSS per-
forms much better than IRONMAN. After about 44.4 hours,
100% of misbehaving nodes can be detected in TRSS, while
IRONMAN only detects 13.5%. As discussed before, TRSS
detects malicious nodes by indirect evaluation and Encounter-
based Acknowledgment. Indirect evaluation helps to spread
more nodes’ trust values widely and rapidly. Encounter-based
Acknowledgment mechanism helps to increase the probability
of successful ACK delivery. TRSS with L = 5 performs
slightly better than with L = 3, since Figure 4 has shown
that the probability for 3 nodes (L = 5) to meet ni is higher
than that for 1 node (L = 3).
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B. Protection Against Different Attacks

We evaluate the protections of our TRSS scheme against
different attacks in the following. We set α to 0.5 and β to
0.06.

(1) Against selfishness. First, we set the percentage of selfish
nodes to 50% and vary the packet dropping probability of
selfish nodes from 0% to 100%. We evaluate the performance
with our scheme in two cases, utilizing the trust model and
without using the trust model. Figure 8a shows the delivery
ratio decreases with dropping probability. Also, the delivery
ratio with the trust model is higher than that without the trust
model.

Then, we set the ratio of selfish nodes to 50% and the
dropping probability of selfish nodes to 20% and 100%
respectively. From Figure 8b, we can see the Average Trust
Value (ATV) can effectively capture the selfish behaviors and
decrease with the dropping probability.

(2) Against Defamation and Boost. As recommendations are
taken into consideration during the indirect trust evaluation,
malicious parties can carry out defamation and boost attacks.
To resist these attacks, once a node is detected to be malicious
because of its low trust values, its recommendations will bring
little impact on its neighbors’ decision making.

In Figure 8c, the ATV of certain nodes (Defamation victims
or Boost victims) varies with hours, and as time goes on, their
ATV approaches that of normal nodes. Initially, the ATV of
defamation victims is 0.1 while the ATV of boost victims is
0.9. But the ATV from normal nodes to victims is set as 0.5.
As simulations proceed, the ATV of boost victims degrades to
0.5 or so, while the ATV of defamation victims increases to
0.5. Meanwhile, the ATV of normal nodes remains 0.5 because
there is no packet generated. From Figure 8c, we can clearly
see that although the malicious nodes change their own trust
tables maliciously, their bad influence on the whole network
remains very low. As the simulation proceeds, the incorrect
trust values are diluted and go back to 0.5. Thus, TRSS can
defend against the defamation attack and boost attack very
well.

(3) Against Self-Promoting. The simulation results in Fig-
ure 8c also show that TRSS can defeat self-promoting attack
successfully. Even though a node can promote its trust credit,
its ATV will return to the normal value, which shares the
same reason with Against Defamation and Boost scenario. So
its evaluation will only bring negligible influence on the other
nodes in routing decision.

(4) Against Promise-Then-Drop. As more normal nodes
become selfish, the number of dropped packets should increase
sharply, although they have promised to forward packets.
TRSS can resist the Promise-Then-Drop attack because TRSS
updates the trust values based on EACK instead of the
promise. In this simulation, we set L = 3. As shown in
Figure 9a, the average number of dropped packets is much
lower when EACK is applied to detect misbehaving nodes,
since packets will not be forwarded to them. As shown in
Figure 9a, a starting point lies at the point where number of
attacks is 5. It shows that these selfish nodes are not detected

before ACK packets return to the source.

C. Impact of the Adjustment factors

(1) Impact of the value of β.
In Eq. (5), the adjustment factor β can be modified to adapt

the variation ratio of trust value. The impact of β on direct
trust evaluation is shown in Figure 9b, where β values are
set to 0.1, 0.2, 0.5 and 1, respectively. With β = 0.1, the
ATV increases slowly. With β = 1, the ATV increases the
fastest. Thus, the bigger the β value is, the faster the ATV
value changes.

(2) Impact of the value of L.
As we discuss in Section IV-D, the Encounter-based Ac-

knowledgment has a factor L, which controls the number of
nodes who should reply an ACK for the pre-hop. As we can
see in Figure 9c, ADR increases as L increases, as a larger
value L results in more nodes along the routing path to return
ACKs back to the packet sender (ni in Figure. 4).

VI. CONCLUSION

In Opportunistic Networks, store-and-forward routing is
adopted to deliver packets. To save the limited resources,
some selfish or malicious nodes can drop data packets quietly,
degrading the network performance. Thus, designing and ap-
plying an appropriate cooperation mechanism to address these
attacks is important for practical network.

In this paper, we have designed and validated a trust routing
protocol for OppNets. Our trust management combines routing
behaviors with social similarity to obtain a composite trust
metric. Every node can evaluate other nodes’ trustworthiness
using direct or indirect trust model. Simulation results show
that our protocol can not only accurately detect the selfish or
malicious nodes but also improve the delivery performance
in the presence of these nodes. Our results also confirm that
social information can be exploited to improve the incentive
mechanism.

In the future work, we will refine our trust model based on
more social network behaviors and investigate the security and
privacy in social routing.
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