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The Self-Driving Cars Wearing a
Cone of Shame

There’s a brilliant activist campaign to stop San Francisco’s
autonomous vehicles in their tracks.

BY ALISON GRISWOLD JULY 11, 2023 - 10:45 AM

It looks like a sad unicorn (which, inaway, itis). Screengrab from TikTok/Safe Street Rebel
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[5] Man, Yanmao, et al. "Evaluating perception attacks on prediction and planning
of autonomous vehicles." USENIX Security Symposium Poster Session. 2022.




Misclassification Attacks

Exorcising “Wraith”: Protecting LiDAR-based Object Detector
in Automated Driving System from Appearing Attacks

USENIX Security 2023

Towards Robust LiDAR-based Perception in Autonomous Driving: General
Black-box Adversarial Sensor Attack and Countermeasures
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Drift with Devil: Security of Multi-Sensor Fusion based Localization in
High-Level Autonomous Driving under GPS Spoofing

USENIX Security 2020

Anomaly Detection Against GPS Spoofing Attacks Chen
on Connected and Autonomous Vehicles Using

PercepGuard aims to detect
misclassification attacks
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» Specific to some attack methodology
* Adversarial Patch

* Norm-bounded




Data
PercepGuard aims to detect

Agnostic to misclassification attacks
» Attack methodologies

» Object detection and tracking algorithms



Data
Perception Prediction

PercepGuard aims to detect
misclassification attacks by
veritying the spatiotemporal
consistency of the perception result



Spatio-temporal Consistency
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Spatio-temporal Consistency



Spatio-temporal Consistency
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Research Questions:

* Do bounding boxes provide
statistically-sufficient information?

* Does the detection algorithm
produce low false positive and
negative rates?

e [s it robust against adaptive

attackers?
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* Do bounding boxes provide
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Research Questions:
* Do bounding boxes provide

statistically-sufficient information?



Evaluation

Research Questions:

Dataset:

* Berkeley Driving Dataset (BDD)

* Does the detection algorithm | |
- * Five object classes:
produce low false positive and |
e bike, bus, car, pedestrian, truck

q Classification Accuracy: 95%

False Negative Rate: 5%

negative rates?



Evaluation

minimize ||A| such that ¢ = ¢”
A /' S
" " YOLO's
person classification
Attack Model: result

o Attack Goal: Causing the rear car to recognize
the front car as a person thus decides to stop
(e.g., on a highway)

o Attacker's Capability: They utilize the
adversarial machine learning to generate

adversarial patches with white-box knowledge

of the object detection algorithm (e.g., YOLO)

True Positive Rate: ?7
False Negative Rate: 5%



Evaluation
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Table I: Adversarial patch attacks with BDD100K

Attack Type Patch Size A.M.R. T.PR. AS.R.

Defer 20 x 20 83.47% 99.63% 0.3%
i 40 x 40 80.41%  100% 0%
60 x 60 92.94%  100% 0%

But, what about adaptive attackers, who are
aware of our defense and try to evade it?

True Positive Rate: Above 99%
False Negative Rate: 5%
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Evaluation

RNN
_ A sequence of bounding boxes q Object Class
Research Questions: +

Contextual Information

 Ego-vehicle velocity
* Relative velocity to the object

20 %20  7325% 98.74%  0.92%
Defense- 40 x40  80.49% 90.33%  7.78%
60 x 6( 87.6% 85.67% 12.55%

with contexts 60 x 60 88.76%  99.35% 0.6%

e [s it robust against adaptive

ttackers?
attackers True Positive Rate: Above 99% 85%

False Negative Rate: 5%
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Real-world Experiments
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Real-world Experiments

(a) Person (b) Stop sign on monitor

Table 4: Real image attacks in the real-world

Real Images of Device ARR TPR ASR

(c) Projected stop sign

(d) Adversarial patch

Table 5: Adversarial patch attacks in the real-world

Monitor 63.2% 83.3% 10.6%

People Projector  58.8%  100% 0%

Monitor 40.0% 100% 0%

Stop Signs Projector  20.0% 100% 0%

Attack Type Device AMR TPR ASR
Defense- Monitor 52.2% 100% 0%
unaware Projector 27.3% 100% 0%
Defense- Monitor 45.5% 100% 0%
aware Projector 20.0% 100% 0%




More Evaluation

e Baseline comparison
e Sensitivity analysis
* Alternative operating points

 Additional features
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Misclassification Attack Detection




Spatiotemporal Consistency

* Adaptive Attacks
 Contextual information

* True positive rate: above 99%

* False negative rate: 5%



Future Work

 More spatiotemporal features
» Different Sensors
 Semantic Segmentation
* Detecting object creation attacks

 Attention-based

» Sensor Configuration Randomization
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