Yanmao Man[#], Raymond Muller[§], Ming Li[#], Z. Berkey Celik[§], Ryan Gerdes[‡] #University of Arizona *§*Purdue University *‡Virginia* Tech

Autonomous Systems

Perception Security

Stop Sign Sticker

Phantom Attack

- 1. Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification." CVPR 2018.
- 2. Nassi, Ben, et al. "Phantom of the adas: Securing advanced driver-assistance systems from split-second phantom attacks." CCS 2020
- 3. Man, Yanmao et al. "GhostImage: Remote perception attacks against camera-based image classification systems." RAID 2020
- 4. Cao, Yulong, et al. "Adversarial sensor attack on lidar-based perception in autonomous driving." CCS 2019.

GhostImage Camera Attack

LiDAR Spoofing

The Self-Driving Cars Wearing a Cone of Shame

There's a brilliant activist campaign to stop San Francisco's autonomous vehicles in their tracks.

BY ALISON GRISWOLD

It looks like a sad unicorn (which, in a way, it is). Screengrab from TikTok/Safe Street Rebel

JULY 11, 2023 • 10:45 AM

slate.com

Perception Security

ment

Misclassification Attacks

*Baidu Apollo

Misclassification Attacks

https://toocooltrafficschool.com/following-distance/

[5] Man, Yanmao, et al. "Evaluating perception attacks on prediction and planning of autonomous vehicles." USENIX Security Symposium Poster Session. 2022.

Misclassification Attacks

Exorcising "Wraith": Protecting LiDAR-based Object Detector in Automated Driving System from Appearing Attacks

USENIX Security 2023

Towards Robust LiDAR-based Perception in Autonomous Driving: General Black-box Adversarial Sensor Attack and Countermeasures USENIX Security 2020

Drift with Devil: Security of Multi-Sensor Fusion based Localization in **High-Level Autonomous Driving under GPS Spoofing**

USENIX Security 2020

Anomaly Detection Against GPS Spoofing Attacks Chen ne on Connected and Autonomous Vehicles Using ci.edu Learning From Demonstration TEEE T-ITS 2023

SAVIOR: Securing Autonomous Vehicles with Robust Physical Invariants

USENIX Security 2020

ObjectSeeker: Certifiably Robust Object Detection against Patch Hiding Attacks via Patch-agnostic Masking

IEEE S&P 2023

AdvIT: Adversarial Frames Identifier Based on Temporal Consistency In Videos **IEEE ICCV 2019**

Chaowei Xiao¹* Ruizhi Deng² Bo Li³ Taesung Lee⁴ Benjamin Edwards⁴ Jinfeng Yi⁵ Dawn Song⁶ Mingyan Liu¹ Ian Molloy⁴ ¹ University of Michigan, Ann Arbor ² Simon Fraser University ³ UIUC ⁴ IBM Research AI ⁵ JD.com ⁶ UC Berkeley

PercepGuard aims to detect misclassification attacks

Existing defenses against perception attacks are either

- Specific to some sensing modality
 - LiDARs
 - GPS
 - IMU
- Specific to some attack methodology
 - Adversarial Patch
 - Norm-bounded

Agnostic to

- Attack methodologies
- Object detection and tracking algorithms

PercepGuard aims to detect misclassification attacks

PercepGuard aims to detect misclassification attacks by verifying the spatiotemporal consistency of the perception result

Research Questions:

- Do bounding boxes provide statistically-sufficient information?
- Does the detection algorithm produce low false positive and negative rates?
- Is it robust against adaptive attackers?

PercepGuard Design

Research Questions:

 Do bounding boxes provide statistically-sufficient information?

Research Questions:

- Do bounding boxes provide statistically-sufficient information?
- Does the detection algorithm produce low false positive and negative rates?
- Is it robust against adaptive attackers?

Research Questions:

- Do bounding boxes provide statistically-sufficient information?
- Does the detection algorithm produce low false positive and negative rates?
- Is it robust against adaptive attackers?

- **Dataset:**
- Berkeley Driving Dataset (BDD)
- Five object classes:

• bike, bus, car, pedestrian, truck

Classification Accuracy: 95% False Negative Rate: 5%

- Attack Goal: Causing the rear car to recognize the front car as a person thus decides to stop (e.g., on a highway)
- Attacker's Capability: They utilize the adversarial machine learning to generate adversarial patches with white-box knowledge of the object detection algorithm (e.g., YOLO)

True Positive Rate: ?? False Negative Rate: 5%

Table I: Adversarial patch attacks with BDD100K

Attack Type	Patch Size	A.M.R.	T.P.R.	A.S
Defense- unaware	$\begin{array}{c} 20 imes 20 \\ 40 imes 40 \\ 60 imes 60 \end{array}$	83.47% 89.41% 92.94%	99.63% 100% 100%	0.3

But, what about adaptive attackers, who are aware of our defense and try to evade it?

Research Questions:

- Do bounding boxes provide statistically-sufficient information?
- Does the detection algorithm produce low false positive and negative rates?
- Is it robust against adaptive attackers?

$$\begin{array}{ll} \text{minimize} & \|\Delta\| & \text{such that} & \bar{c} = c'' \\ & \bar{c} = c' \end{array}$$

Table I: Adversarial patch attacks with BDD100K

Attack Type	Patch Size	A.M.R.	T.P.R.	A.S
Defense- unaware	$\begin{array}{c} 20 imes 20 \\ 40 imes 40 \\ 60 imes 60 \end{array}$	83.47% 89.41% 92.94%	99.63% 100% 100%	0.3

But, what about adaptive attackers, who are aware of our defense and try to evade it?

Research Questions:

- Do bounding boxes provide statistically-sufficient information?
- Does the detection algorithm produce low false positive and negative rates?
- Is it robust against adaptive attackers?

$$\begin{array}{ll} \text{minimize} & \|\Delta\| & \text{such that} & \bar{c} = c'' \\ & \bar{c} = c' \end{array}$$

Table I: Adversarial patch attacks with BDD100K

Attack Type	Patch Size	A.M.R.	T.P.R.	A.S
Defense- unaware	$\begin{array}{c} 20 imes 20 \\ 40 imes 40 \\ 60 imes 60 \end{array}$	83.47% 89.41% 92.94%	99.63% 100% 100%	0.3

Research Questions:

- Do bounding boxes provide statistically-sufficient information?
- Does the detection algorithm produce low false positive and negative rates?
- Is it robust against adaptive attackers?

$$\begin{array}{ll} \text{minimize} & \|\Delta\| & \text{such that} & \bar{c} = c'' \\ & \bar{c} = c' \end{array}$$

Table I: Adversarial patch attacks with BDD100K

Attack Type	Patch Size	A.M.R.	T.P.R.	A.S
Defense- unaware	$\begin{array}{c} 20 imes 20 \\ 40 imes 40 \\ 60 imes 60 \end{array}$	83.47% 89.41% 92.94%	99.63% 100% 100%	0.(
Defense- aware	$\begin{array}{l} 20 imes 20 \\ 40 imes 40 \\ 60 imes 60 \end{array}$	73.25% 80.49% 87.6%	98.74% 90.33% 85.67%	0.92 7.78 12.55

Research Questions:

- Do bounding boxes provide statistically-sufficient information?
- Does the detection algorithm produce low false positive and negative rates?
- Is it robust against adaptive attackers?

$$\begin{array}{ll} \text{minimize} & \|\Delta\| & \text{such that} & \bar{c} = c'' \\ & \bar{c} = c' \end{array}$$

Table I: Adversarial patch attacks with BDD100K

Attack Type	Patch Size	A.M.R.	T.P.R.	A.S
Defense- unaware	$\begin{array}{c} 20 imes 20 \\ 40 imes 40 \\ 60 imes 60 \end{array}$	83.47% 89.41% 92.94%	99.63% 100% 100%	0.(
Defense- aware	20×20 40×40 60×60	73.25% 80.49% 87.6%	98.74% 90.33% 85.67%	0.92 7.73 12.53

Research Questions:

- Do bounding boxes provide statistically-sufficient information?
- Does the detection algorithm produce low false positive and negative rates?
- Is it robust against adaptive attackers?

Research Questions:

- Do bounding boxes provide statistically-sufficient information?
- Does the detection algorithm produce low false positive and negative rates?
- Is it robust against adaptive attackers?

A sequence of bounding boxes

Contextual Information

- Ego-vehicle velocity
- Relative velocity to the object

Defense- aware	$\begin{array}{l} 20 imes 20 \\ 40 imes 40 \\ 60 imes 60 \end{array}$	73.25% 80.49% 87.6%	98.74% 90.33% 85.67%	0.929 7.789 12.559
with contexts	60×60	88.76%	99.35%	0.69

True Positive Rate: Above 99% 85% False Negative Rate: 5%

99%

Real-world Experiments

Real-world Experiments

Real-world Experiments

(a) Person

(b) Stop sign on monitor

Table 4: Real image attacks in the real-world

Real Images of	Device	ARR	TPR	ASR	Attack Type	Device	AMR	TPR	ASR
People	Monitor Projector	63.2% 58.8%	83.3% 100%	10.6% 0%	Defense- unaware	Monitor Projector	52.2% 27.3%	100% 100%	0% 0%
Stop Signs	Monitor Projector	40.0% 20.0%	$100\% \\ 100\%$	0% 0%	Defense- aware	Monitor Projector	45.5% 20.0%	100% 100%	0% 0%

(c) Projected stop sign

(d) Adversarial patch

Table 5: Adversarial patch attacks in the real-world

More Evaluation

- Baseline comparison
- Sensitivity analysis
- Alternative operating points
- Additional features

- Adaptive Attacks
- Contextual information
- True positive rate: above 99%
- False negative rate: 5%

Future Work

- More spatiotemporal features
 - Different Sensors
 - Semantic Segmentation
- Detecting object creation attacks
- Attention-based
- Sensor Configuration Randomization

The Self-Driving Cars Wearing a Cone of Shame

There's a brilliant activist campaign to stop San Francisco's autonomous vehicles in their tracks.

BY ALISON GRISWOLD

It looks like a sad unicorn (which, in a way, it is). Screengrab from TikTok/Safe Street Rebel

JULY 11, 2023 • 10:45 AM

slate.com

Yanmao Man[#], Raymond Muller[§], Ming Li[#], Z. Berkey Celik[§], Ryan Gerdes[‡] #University of Arizona *§*Purdue University *‡Virginia* Tech

