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Physically-realizable Perception Attacks

These perception 
attacks alter the data 
at the source, hence 
bypassing traditional 

digital defenses
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[5] Man, Yanmao, et al. "Evaluating perception attacks on prediction and planning 
of autonomous vehicles." USENIX Security Symposium Poster Session. 2022.
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Existing defenses against perception 
attacks are either

• Specific to some sensing modality


• LiDARs

• GPS

• IMU


• Specific to some attack methodology

• Adversarial Patch

• Norm-bounded

USENIX Security 2020 
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PercepGuard aims to detect 
misclassification attacks by 
verifying spatiotemporal 
consistency of the perception result
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PercepGuard aims to detect 
misclassification attacks by 
verifying the spatiotemporal 
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Agnostic to

• Attack methodologies

• Object detection and tracking algorithms
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Our 
Defense
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Attacked?
• Spatio-Temporal Features

• Object Class 
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statistically-sufficient information?


• Does the detection algorithm 
produce low false positive and 
negative rates?
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Research Questions: 

• Do bounding boxes provide 
statistically-sufficient information?


• Does the detection algorithm 
produce low false positive and 
negative rates?


• Is it robust against adaptive 
attackers?

We propose to use a recurrent 
neural network (RNN) as a 
sequence classifier to learn 
such patterns.
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Research Questions: 

• Do bounding boxes provide 
statistically-sufficient information?


• Does the detection algorithm 
produce low false positive and 
negative rates?


• Is it robust against adaptive 
attackers?

Dataset: 

• Berkeley Driving Dataset (BDD)


• Five object classes:


• bike, bus, car, pedestrian, truck


• Is it robust against adaptive attackers?

Classification Accuracy: 95%
False Negative Rate: 5%

Evaluation



Challenges: 

• Do bounding boxes provide 
statistically-sufficient information?


• Does the detection algorithm 
produce low false positive and 
negative rates?


• Is it robust against adaptive 
attackers?

False Negative Rate: 5%
True Positive Rate: ??

Attack Model: 

• Attack Goal: Causing the rear car to recognize 
the front car as a person thus decides to stop 
(e.g., on a highway)


• Attacker's Capability: They utilize the 
adversarial machine learning to generate 
adversarial patches with white-box knowledge 
of the object detection algorithm (e.g., YOLO)

CPerson
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False Negative Rate: 5%
True Positive Rate: Above 99%

But, what about adaptive attackers, who are 
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More Evaluation

• Baseline comparison


• Sensitivity analysis


• Alternative operating points


• Additional features
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• Adaptive Attacks


• Contextual information


• True positive rate: above 99%


• False negative rate: 5%
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• More spatiotemporal features


• Different Sensors


• Semantic Segmentation


• Detecting object creation attacks


• Attention-based


• Sensor Configuration Randomization

Future Work
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