
HQuad: Statistics of Hamiltonian Cycles in

Wireless Rechargeable Sensor Networks

Yanmao Man

Dept. of ECE

University of Arizona

Tucson, AZ, U.S.A.

yman@email.arizona.edu

Jing Deng

Dept. of CS

UNC at Greensboro

Greensboro, NC, U.S.A.

jing.deng@uncg.edu

George T. Amariucai

Dept. of CS

Kansas State University

Manhattan, KS, U.S.A.

amariucai@ksu.edu

Shuangqing Wei

School of EECS

Louisiana State University

Baton Rouge, LA, U.S.A.

swei@lsu.edu

Abstract—The rise of wireless rechargeable sensor networks
calls for an analytical study of planned charging trips of wireless
charging vehicles (WCVs). Often times, the WCV receives a
number of charging requests and form a Hamiltonian cycle
and visit these nodes one-by-one. Therefore, it is important
to learn the statistics of such cycles. In this work, we use a
heuristic algorithm, which we term HQuad, that takes O(N)
to generate a Hamiltonian cycle in a 2-D network plane be-
fore we analyze its statistics. HQuad is based on a recursive
approximation of dividing the region into four quadrants and the
non-empty quadrants will be visited one-by-one. Our analysis is
based on Poisson point distribution of nodes and models such
Hamiltonian cycles surprisingly well in both expected values and
the distribution functions of lengths as a function of different
network parameters. Numerical results of our analysis model are
compared with simulations and demonstrated to be accurate.

Index Terms—wireless rechargeable; Hamiltonian Cycle; wire-
less sensor networks

I. INTRODUCTION

Wireless devices usually run on energy stored on batter-

ies. Due to their physical constraints, these batteries will

run out of energy sooner or later. Wireless power transfer

technology is expected to pave the way for the so-called

wireless rechargeable networks, in which wireless devices will

have their batteries replenished from time to time, virtually

extending their lifetimes forever [1]–[3].

Most often, there is one or multiple WCVs in such networks.

WCV receives charging requests from wireless devices and

chooses a list of them to visit/charge one after another [4],

[5]. In this work, we try to answer the following fundamental

question: based on a certain node density and random distri-

bution, how to compute or estimate the lengths of the charging

cycle without knowing the exact location of these nodes on

the plane? Any of such charging cycles will be considered a

Hamiltonian cycle, but we are interested in the shortest one

that will save time and travel distance for WCV.

Answers to the above question obviously have many prac-

tical applications such as network planning and scheduling.

For instance, the expected length of such shortest Hamiltonian

cycles in a known network setting (of certain node density and

network region) can ensure that the battery capacity of WCV is
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able to sustain such a charging trip before returning for its own

charge or battery replacement, or maybe an additional WCV

is required for the normal operation of the entire network.

The problem is closely related to Traveling Salesman Prob-

lem (TSP) but different. TSP aims to give shortest Hamil-

tonian cycles and sometimes approximates with short running

times [6], while this paper targets the estimation of such cycles

by giving a probabilistic model [7].

In this work, we propose HQuad, Quadtree-based heuristic

algorithm, that takes O(N) to generate a Hamiltonian cycle

given a network within a square plane. HQuad is an approx-

imation method to come up with a Hamiltonian cycle that is

very close to the actual shortest Hamiltonian cycle. With the

help of HQuad, we can derive charging path statistics such as

average length and probability density function (PDF).

The main objective of this work is to provide an efficient

method to compute the statistics of Hamiltonian paths so

that networks can be planned with sufficient resources, e.g.,

charging capacity, number of charging vehicles, and/or number

of devices to be charged.

II. RELATED WORK

The well-known Traveling Salesman Problem (TSP) is

certainly related to what we are trying to achieve. Many

works have been done on TSP [8]. Arora [9] proposed an

approximation algorithm for Euclidean TSP problem, where

coordinates of nodes are at first perturbed, then a shifted

Quadtree is constructed. Finally, dynamic programming is

performed to find the optimal Hamiltonian cycle. However,

we focus on path statistics here.

Wireless Sensor Recharging problem has been investigated

on in recent years. The problem is to schedule a route

for one or more WCVs so that they could recharge those

devices in low battery energy. A hexagon-based scheme was

proposed in [10]. Martello presented an algorithm to identify

Hamiltonian circuits in directed graphs [11]. The algorithm

used branching decisions and backtracking to filter and record

potential Hamiltonian circuits. Krivelevich et al. investigated

Hamiltonian cycles in random graphs, but did not focus on its

length distribution [12].
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Fig. 1: HQuad Algorithm illustrations.

Vig and Palekar [13] investigated the probability distribution

of estimated TSP tour lengths using heuristics and fits for the

first four moments were derived.

Different from these prior arts, the main target of this paper

is not to provide a recharging dispatch algorithm. Instead,

we aim to give a probabilistic distribution of Hamiltonian

cycle given the density and the size of square plane where

the devices are located.

III. HQUAD: HEURISTIC QUADTREE-BASED ALGORITHM

FOR HAMILTONIAN CYCLES

A. Problem Statement

We focus on a network with a size of r × r and N nodes,

each of which needs to be charged. Note that the investigation

of an arbitrary rectangle area of r×w is essentially the same

with each quadrant in similar shape as the original one and

some of the results extended from squares. Therefore, we focus

on square areas in this work:

Hamiltonian Cycles (HAM): What is the distribution of

the shortest Hamiltonian cycle in a region of r × r with N
nodes distributed?

The exact derivation of such a distribution is impossible

because Hamiltonian cycle/path problem is NP-complete. Yet,

such a distribution can be immensely helpful in network

planning as well as algorithm design in Wireless Rechargeable

Sensor Networks (WRSNs). Therefore, we use a heuristic

approach, termed HQuad [9], to identify the statistics of the

shortest Hamiltonian cycles.

B. Primary

HQuad is based on Divide-and-Conquer strategy that takes

the locations of N nodes in a square block as input and

generates the Hamiltonian Cycle for WCV to follow.
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Fig. 2: An example of blocks and recharging route.

As shown in Figure 1.a, N nodes are placed in an r × r
square block S0, which is divided into four r/2 × r/2 sub-

blocks that are marked as Si, i = 1, 2, 3, 4. WCV visits each

sub-block from one to another before returning to the starting

point. Each sub-block is further divided quadruply into smaller

ones, where WCV follows similar route to visit the nodes and

then goes to the next bigger block as illustrated in Figure 1.b

and 1.c when we zoom in. Normally, some blocks may be

empty and some do not need to be divided any further with

only one node in each of them. More realistic example of

division is shown in Figure 2, where we can observe that all

blocks contain at most one node and WCV only visits the

non-empty blocks rather than all (sub)blocks.

C. Algorithm Details

Because the blocks are divided into 4 equal sub-blocks when

necessary, we use Quadtree T as the data structure where

every parent owns exactly 4 children, similar to [14]. Each

vertex in T represents a block and its children represent the

sub-blocks. In this subsection, the terms “block” and “vertex”

are interchangeable, so are the terms “sub-block” and “child”.

The biggest block is represented by vertex root, which

is the root of T . For each vertex parent, it contains two

elements, seq and nodes. seq decides the visiting sequence

of its sub-blocks. For example, if seq = (S3, S4, S1, S2), then

the route is shown in Figure 1.b. nodes is the set of nodes that

locate within this block. Take S4 in Figure 2 for an example,

nodes4 = {n7, n8, n9}.
The Quadtree T is built up in Algorithm 1 from Line 1

to Line 20 in the way of Breadth-first Search (BFS) with a

queue Q. For every vertex parent in Q, we first test if its

nodes set contains only one node or nothing at all. If so, then

we continue to the next iteration because we do not have to

further divide this block. Otherwise, we have to at first derive

the sequences belonging its children seqi, i = 1, 2, 3, 4.

We need to determine the seq of every parent. Suppose

sequence of the parent is seq = (Sa, Sb, Sc, Sd), the sequence

of its first child Sa is seqa = (Sa, Sd, Sc, Sb). Note that

the first child might not be S1. For example, in Figure 1.b,
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Fig. 3: An example of Quadtree T generation.

the first child Sa is S′
3. The second and third children share

the same sequence with seq. The fourth one depends on

whether the parent is the root of T or not. If so, then

seqd = (Sc, Sd, Sa, Sb). Else, then seqd = (Sc, Sb, Sa, Sd).
The reason of such a difference is that if the parent is the root,

which represents the biggest block, then when WCV finishes

the fourth sub-block, it goes back to the starting point (see S′
2

in Figure 1.b). If parent is not the root, WCV goes to the

next bigger block (see S′′
4 in Figure1.c).

Having the seqi and nodesi of the 4 sub-blocks, we attach

them to parent as its children in the order of how seq indicates

and put them into Q. When Q becomes empty and the while

loop breaks, we run Depth-First-Search (DFS) on T and output

those nodes having exactly one node in them.

Given the locations of M = 10 nodes in Figure 2, an

example of Quadtree generated by Algorithm 1 is shown in

Figure 3.

In Algorithm 1, the while loop takes O(N) and the DFS

takes O(N). Finally, the time complexity of proposed algo-

rithm HQuad is O(N).

IV. ANALYSIS

We focus on an area of r × r and mark four sub-block

as illustrated in Figure 1.a. Each of these blocks has a size

of r/2 × r/2. We name these blocks Si, i = 1, 2, 3, 4,

counterclockwise starting from top left.

We introduce a binary tuple A = (b1, b2, b3, b4) to represent

whether each sub-block contains at least one node. For exam-

ple, A = (1, 1, 0, 1) means each of the sub-blocks s1, s2, s4
contains at least one node and the sub-block s3 does not

contain any node. Obviously there are 15 different settings

for A, which we define as A, ranging from (0, 0, 0, 1) to

(1, 1, 1, 1).
Define f(r, ρ, n) as PDF of number of nodes, n, within a

block r× r, given density ρ. We further assume Poisson point

Algorithm 1 HQuad(nodes0)

1: seq ← (S1, S2, S3, S4)
2: root ← (seq, nodes)
3: Add root into a queue Q
4: while Q 6= ∅ do

5: parent← Q.poll()
6: (seq, nodes)← parent
7: if Size of nodes0 is 1 then

8: Continue

9:

10: (Sa, Sb, Sc, Sd)← seq
11: seq1 ← (Sa, Sd, Sc, Sb)
12: seq2 ← seq3 ← seq
13: if parent is root then seq4 ← (Sc, Sd, Sa, Sb)
14: else seq4 ← (Sc, Sb, Sa, Sd)

15:

16: for i = 1 to 4 do

17: nodesi ← nodes within the sub-block seq[i]
18: childi ← (seqi, nodesi)
19: Add childi into Q
20: Attach childi as No.i child of parent

21: Run Depth-First Search (DFS) from root, meanwhile

output non-empty set nodes of every leaf.

distribution for ease of analysis (although we do not expect

to see any difference in the operation of HQuad in other node

distributions), we have

f(r, ρ, n) =
(ρr2)n

n!
e−ρr2 . (1)

Define g(A, r, ρ) as the probability that, for an r× r block

with node density ρ, the nodes are distributed as A indicates.

g(A, r, ρ) =

(

1− f(
r

2
, ρ, 0)

)|A|
·
(

f(
r

2
, ρ, 0)

)4−|A|
, (2)

where |A| is the number of 1’s in tuple A.

Assume that each node is at the center of its block. Define

h(A, r) as the Euclidean distance needed to visit all the nodes

located at the center of sub-blocks and the path should enter

the top-left sub-block and exit the top-right sub-block. For

example, when A = (1, 1, 1, 1), then h((1, 1, 1, 1), r) = 2r
as illustrated in Figure 4a. When A = (1, 1, 0, 1), then

h((1, 1, 0, 1), r) = (1+
√
2
2 )r as illustrated in Figure 4b. There

are 16 mappings as listed in Table I.

Define D(r, ρ) as the mean of length of Hamiltonian cycle

needed for an r × r block with node density ρ. It can be

calculated recursively.

D(r, ρ) =
∑

A∈A

[

h(A, r)(1 − 1

|A| )

+ |A| ·D(
r

2
, ρ)

]

· g(A, r, ρ) , (3)



TABLE I: Function h(A, r)

A h(A, 1) A h(A, 1)

0 0 0 1 0.809 0 0 1 0 1.4604

0 0 1 1 1.6514 0 1 0 0 1.6514

0 1 0 1 1.7071 0 1 1 0 1.809

0 1 1 1 2 1 0 0 0 1

1 0 0 1 1 1 0 1 0 1.5161

1 0 1 1 1.7071 1 1 0 0 1.6514

1 1 0 1 1.7071 1 1 1 0 1.809

0 0 0 0 0 1 1 1 1 2

r

r

(a) A = (1, 1, 1, 1)

r

r

(b) A = (1, 1, 0, 1)

Fig. 4: Illustrations of h(A, r) with different A.

in which the term 1− 1
|A| reduces the overlap of length between

different recursive levels. The |A| · D( r2 , ρ) represents the

length sum of sub-blocks.

Define ΘL(r, ρ, ℓ) as CDF of the length, ℓ, of Hamiltonian

cycle for an r × r block with node density ρ. It can be

calculated recursively as well. Denote I(A) the set of index

of terms as 1 in A, e.g., for A = (1, 1, 0, 1), I(A) = {1, 2, 4}.

ΘL(r, ρ, ℓ) = Pr(L ≤ ℓ | r, ρ) =
∑

A∈A

{

∫

· · ·
∫ µ

ℓi=0,i∈I(A)

Pr
[

∑

i∈I(A)

ℓi + h(A, r)(1 − 1

|A| ) ≤ ℓ
]

·
∏

i∈I(A)

ΘL(
r

2
, ρ, ℓi)dℓi

}

· g(A, r, ρ)

(4)

Recursion continues until f(r, ρ, 2) < ǫ (an accuracy control

parameter), in which case

ΘL(r, ρ, ℓ) =

∫ ℓ

v=0

λ(r, v), (5)

where λ(r, v) is defined as the PDF of the distance, v, between

two random points in an r× r square [15]. Let s = v2, define

Λ(r, s) =











π
r2
− 4

√
s

r3
+ s

r4
, 0 < s ≤ r2

− 2
r2

+ 4
r2
sin−1( r√

s
)

+ 4
r3

√
s− r2 − π

r2
− s

r4
, r2 < s ≤ 2r2.

Then λ(r, v) = Λ(r, s) ds
dv

= 2vΛ(r, v2).

In (4), the integral cap µ is supposed to be ∞. In practice,

µ = 2D( r2 , ρ).
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Fig. 5: Least and Greatest hop distance in each Hamiltonian

cycle.

V. PERFORMANCE EVALUATION

We present performance evaluation in this section. We first

show results from simulations, in which N nodes are randomly

placed on an r×r region and we used a Genetic Algorithm [7]

to identify the near optimum Hamiltonian cycles. Then the

results of our HQuad algorithm and computation are shown

and compared to the simulation results. Finally, we use an

example of network planning to further demonstrate how to

use these PDF results.

In Figure 5, we show the least and the greatest hop distance

in each Hamiltonian cycle as a function of N . These represent

the shortest and longest hop in the entire Hamiltonian cycle

when N nodes are randomly deployed in the r×r region. The

95% confidence intervals are also shown in the same figure.

In general, a decreasing trend can be observed in both greatest

and least hop distance as N increases after 4, caused by the

increasing number of nodes in the network. The initial increase

of greatest hop distance when N = 2, 3 is because of the small

number of hops in the entire Hamiltonian cycle. For example,

there are only two hops between N = 2 nodes a region and

three hops between N = 3 nodes.

In Figure 6, we compare simulation and numerical results

on Hamiltonian cycle lengths as a function of N for different r
(the region size). The 95% confidence intervals are also shown

for the simulation results. It can be seen that these two sets of

results match quite well with each other. Under large n and

large r, our numerical results are lower than simulation results

with larger gaps (due to recursive approximations).

We demonstrate how to use these PDF results in a hypo-

thetical network planning. Suppose N nodes will be deployed

to a 1, 000 × 1, 000 region and we have only one WCV to

charge these devices trying to keep all of these active. The

WCV has a battery capacity of 120 KJ, consumes 50 Joules

per meter on traveling and 1 J/s in general, charges sensors at

the rate of 2 J/s, and moves at a speed of 1 m/s [5].

We will use our numerical results to compute the probability

of successful charging support of N nodes with the above



Fig. 6: Comparison between simulation and numerical re-

sults (3) on Hamiltonian cycle lengths, D.
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battery capacities as a function of N .

network parameters for different sensor battery capacities,

Es = 0.5, 2, 4, 8 KJ, respectively. Such probabilities are shown

in Figure 7. When Es is relatively small (assuming that energy

consumption rate of the sensors is also small enough to wait

for next round of charging), roughly 25 to 35 sensors can

be supported. As Es increases, fewer and fewer sensors can

be supported. This is because of the heavier load to charge

sensors and the longer Hamiltonian cycles for the WCV to

traverse before it can return and replace/charge its own battery.

For example, when Es = 8 KJ, the network can support only

7 sensors.

Suppose our goal is to ensure that the WCV should have

a battery that is large enough to provide successful charging

to all sensors in the network with 80% and 95% probability,

respectively. We can use the numerical results to compute

the required capacity of the WCV battery, based on a fixed

Es value, e.g., 4 KJ. We show the results on Table II. The

increase in required WCV battery capacity is due to both of the

additional energy needed to charge the sensors as N increases.

TABLE II: Battery Capacity Requirement

N 2 4 8 22 50

EWCV (80%) 43.9 71.3 109.0 221.5 428.2

EWCV (95%) 52.6 77.6 115.2 225.3 432.7

VI. CONCLUSION

In this paper, we have investigated the charging trip prob-

lem of the WCV in wireless recharging networks. We have

introduced a fast heuristic algorithm, HQuad, that generates

Hamiltonian cycle in O(N), based on but not restricted to

which we have analyzed and modeled the length of Hamilto-

nian cycle by giving a cumulative distribution function (CDF)

ΘL(r, ρ, ℓ), as well as a mean function D(r, ρ).
Simulation results and Calculation results not only show that

HQuad works well, but also demonstrates that the probabilistic

models are precise.
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